Python 자연어 처리 머신러닝 딥러닝 © johnschno, 출처 Unsplash 오늘은 파이썬의 머신러닝과 딥러닝을 알아보도록 하겠습니다. 머신러닝에 딥러닝이 포함되어 있으며 가볍게 표현하면 규칙을 잡아서 해당 규칙을 분석하여 어떠한 결과를 도출해서 모델을 만드는 것이라고 보시면 됩니다! 서두는 가볍게 이 정도까지만 각설하고 간단하게 검증 하는 과정에 대한 이론과 간단한 용어들에 대해서 정리해보겠습니다! 모델을 만드는 과정 © kellysikkema, 출처 Unsplash 데이터를 분류하는 작업을 가장 먼저 해야하는데 데이터는 작게는 2가지 크게는 3가지로 분류하게 됩니다. 트레이닝 데이터 검증 데이터 / 테스트 데이터로 머신러닝의 재료를 만들어 줍니다. 모델은 일단 트레이닝 데이터를 활용하여 기본적인 훈련을 진행시키고 검증 데이터를 활용하여 튜닝여부를 판단하게 됩니다. 튜닝을 하는 이유는 성능을 더 올리기 위해서 하는 행동입니다. 하지만 이렇게 모델을 만들어도 완벽한 결과를 만들 수 는 없습니다. 그래도 꼭 튜닝은 해줘야합니다 튜닝을 하게 되는 이유는 크게 회귀와 분류에 의해서 발생하는 문제를 고치기 위한 행동이라고 보시면 됩니다. 튜닝을 해야하는 이유인 문제의 종류 연속된 범위의 결과를 예측하는 결과의 문제 회귀 어떠한 문제에서 결과를 선택하는 과정의 문제 분류 나는 위의 두 가지 문제에 대해서 차차 학습할 예정이고 보통은 ...